Understanding and Classifying Metabolite Space and Metabolite-Likeness

نویسندگان

  • Julio E. Peironcely
  • Theo Reijmers
  • Leon Coulier
  • Andreas Bender
  • Thomas Hankemeier
چکیده

While the entirety of 'Chemical Space' is huge (and assumed to contain between 10(63) and 10(200) 'small molecules'), distinct subsets of this space can nonetheless be defined according to certain structural parameters. An example of such a subspace is the chemical space spanned by endogenous metabolites, defined as 'naturally occurring' products of an organisms' metabolism. In order to understand this part of chemical space in more detail, we analyzed the chemical space populated by human metabolites in two ways. Firstly, in order to understand metabolite space better, we performed Principal Component Analysis (PCA), hierarchical clustering and scaffold analysis of metabolites and non-metabolites in order to analyze which chemical features are characteristic for both classes of compounds. Here we found that heteroatom (both oxygen and nitrogen) content, as well as the presence of particular ring systems was able to distinguish both groups of compounds. Secondly, we established which molecular descriptors and classifiers are capable of distinguishing metabolites from non-metabolites, by assigning a 'metabolite-likeness' score. It was found that the combination of MDL Public Keys and Random Forest exhibited best overall classification performance with an AUC value of 99.13%, a specificity of 99.84% and a selectivity of 88.79%. This performance is slightly better than previous classifiers; and interestingly we found that drugs occupy two distinct areas of metabolite-likeness, the one being more 'synthetic' and the other being more 'metabolite-like'. Also, on a truly prospective dataset of 457 compounds, 95.84% correct classification was achieved. Overall, we are confident that we contributed to the tasks of classifying metabolites, as well as to understanding metabolite chemical space better. This knowledge can now be used in the development of new drugs that need to resemble metabolites, and in our work particularly for assessing the metabolite-likeness of candidate molecules during metabolite identification in the metabolomics field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expanding and understanding metabolite space

In metabolomics the identity and role of low mass molecules called metabolites that are produced in cell metabolic processes are investigated. These make them valuable indicators of the phenotype of a biological system. The ‘Metabolite Space’ is the total chemical universe of metabolites present in all compartments and in all states from any organism. These molecules exhibit common features tha...

متن کامل

'Metabolite-likeness' as a criterion in the design and selection of pharmaceutical drug libraries.

Present drug screening libraries are constrained by biophysical properties that predict desirable pharmacokinetics and structural descriptors of 'drug-likeness' or 'lead-likeness'. Recent surveys, however, indicate that to enter cells most drugs require solute carriers that normally transport the naturally occurring intermediary metabolites and many drugs are likely to interact similarly. The e...

متن کامل

Preparation of a Major Metabolite of Iguratimod and Simultaneous Assay of Iguratimod and Its Metabolite by HPLC in Rat Plasma

Iguratimod is a new synthetic disease-modifying antirheumatic drug intended to treat patients with rheumatoid arthritis. A new method using recombinant human CYP450s yeast cells containing c-DNA expressed P450s was applied to identify the metabolic pathways of iguratimod and to prepare its metabolite. The metabolite was isolated, and its structure was identified by quadrupole time-of-flight-mas...

متن کامل

Preparation of a Major Metabolite of Iguratimod and Simultaneous Assay of Iguratimod and Its Metabolite by HPLC in Rat Plasma

Iguratimod is a new synthetic disease-modifying antirheumatic drug intended to treat patients with rheumatoid arthritis. A new method using recombinant human CYP450s yeast cells containing c-DNA expressed P450s was applied to identify the metabolic pathways of iguratimod and to prepare its metabolite. The metabolite was isolated, and its structure was identified by quadrupole time-of-flight-mas...

متن کامل

Molecular Characterization of a Fungus Producing Membrane Active Metabolite and Analysis of the Produced Secondary Metabolite

Background: The majority of studies on soil Aspergillus concern the isolation and characterization of the antimicrobial compounds produced by this organism. Our previous studies indicated an isolated Aspergillus strain soil to be of interest, and this subject is further investigated here. Method:  Soil samples of various locations in Iran were collected. Extract from Aspergillus sp. culture was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011